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• CERES observes TOA radiation – but to understand climate we also need surface & atmospheric fluxes
• The current L2 Single Scanner Footprint (SSF) product estimates surface fluxes w/ simple parameterizations (Model B)

• The Cloud Radiative Swath (CRS) product – reintroduced at last STM – builds upon the SSF by calculating 
instantaneous instrument footprint-level irradiances using the NASA LaRC Fu-Liou radiative transfer model
• SW↓↑ & LW↓↑ broadband flux profiles + Surface narrowband SW & LW, direct + diffuse SW↓, PAR, UV fluxes
• How does CRS compare to Surface-Only Flux Algorithms (SOFA) Model B & other CERES flux products?
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• Here we update & extend our analysis from the last STM to cover an entire year (2019):
CRS vs (1) CERES TOA observations, (2) SSF Model B surface fluxes, (3) SYN1deg surface fluxes

• Can we use CRS to improve FLASHFlux low-latency surface fluxes for the applied science community? 
(4)  Preliminary development & evaluation of Machine Learning models to provide rapid & accurate surface radiative fluxes
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CERES Footprint / FOV
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Clear-Sky

All-Sky

1. CRS TOA Flux Validation

• (↑)  Daily, geographic ΔOLR variability
• CRS minus CERES SSF observations

• (→) Time series of OLR validation stats
• Global statistics remain relatively stable 

throughout 2019
• All-sky bias within -1% (~ -1 to -2 W m-2 )

• Negative clear-sky bias compensated by 
excessive OLR from high clouds

• ~ 7 W m-2 global RMSE w/ strong 
correlation of modeled & observed fluxes
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Clear-Sky

All-Sky

TOA CRS Computed SW↑ vs SSF Ed 4A Observations

1. CRS TOA Flux Validation

• (↑)  Daily, geographic ΔRSW variability
• CRS minus CERES SSF observations

• (→) Time series of RSW validation stats
• Excessive reflection to space by clouds & 

occasionally the surface
• ~ 3 - 4 % global mean all-sky bias 

• Better clear-sky performance
• ~ 0 - 1 % clear-sky relative bias

• Biases relatively stable through time
• RMS peak in boreal spring from surface 

albedo retrievals over NH continents

Spring 2021 CERES / Libera Science Team Meeting
ryan.c.scott@nasa.gov



Surface Validation Sites

2. CRS vs Model B Surface Flux Validation

AWARE @ West Antarctic 
Ice Sheet Divide
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• Using 1-min resolution surface data
• Extracting footprints within 10 km
• LW↓ : instantaneous match to 

pyrgeometer obs. at footprint time
• SW↓ : averaging surface obs. for 30 

mins centered at footprint time
• Total = Direct + Diffuse, resort to 

Global from unshaded PSP if total 
is unavailable

• SW↓CRS scaled by avg(μOBS) / 
μCRS to account for changing μ = 
cos(SZA) 

• FOV size varies with instrument view 
zenith angle (source of noise)

Surface Flux Validation Methodology

2. CRS vs Model B Surface Flux Validation Spring 2021 CERES / Libera Science Team Meeting
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Model B Parameterized FluxesFu-Liou RT Model Fluxes

34-39% 
(50-60 W m-2 ) 
RMS reduction 

relative to Model B



SW↓ N Bias RMSE Corr.

All 7527 -5.66 95.0 0.95

Coastal 1366 -4.4 100.21 0.93

Desert 378 -11.4 78.87 0.92

Island 240 45.62 147.13 0.86

Continent 3049 -1.69 108.32 0.92

Polar 2494 -15.27 66.11 0.94

CERES CRS

SW↓ N Bias RMSE Corr.

All 7527 -0.43 143.35 0.88

Coastal 1366 14.14 130.82 0.88

Desert 378 -0.54 89.09 0.89

Island 240 68.57 154.37 0.86

Continent 3049 6.12 120.36 0.91

Polar 2494 -23.03 177.32 0.58

SW↓ N Bias RMSE Corr.

All 7527 17.96 155.62 0.85

Coastal 1366 10.53 136.55 0.87

Desert 378 -13.7 92.74 0.88

Island 240 70.22 156.01 0.86

Continent 3049 13.39 132.54 0.88

Polar 2494 27.39 194.32 0.56

CERES SSF Ed4A FLASHFlux SSF v4A

Model B Parameterized FluxesFu-Liou RT Model Fluxes

2. CRS vs Model B Surface Flux Validation

Aqua FM3 Daytime SW↓
Fu-Liou vs Model B by surface type

Results for Terra FM1 are similar
* Bias, RMSE units:  W m-2



Model B Parameterized FluxesFu-Liou RT Model Fluxes

Smallest bias &
17% (~ 4.7 W m-2 ) 

RMS reduction relative
to Model B



LW↓ N Bias RMSE Corr.

All 8880 -0.12 22.94 0.96

Coastal 1608 3.48 15.56 0.97

Desert 448 -13.04 23.24 0.93

Island 313 4.98 13.72 0.87

Continent 3293 3.56 25.75 0.91

Polar 3218 -4.37 23.65 0.95

CERES CRS CERES SSF Ed4A FLASHFlux SSF v4A

Aqua FM3 Daytime LW↓
Fu-Liou vs Model B by surface type

LW↓ N Bias RMSE Corr.

All 8880 -0.66 27.66 0.95

Coastal 1608 -0.38 26.25 0.91

Desert 448 -7.51 29.71 0.85

Island 313 6.38 17.82 0.83

Continent 3293 0.9 28.73 0.89

Polar 3128 -2.13 27.73 0.93

LW↓ N Bias RMSE Corr.

All 8880 -1.01 27.69 0.95

Coastal 1608 -1.01 26.55 0.91

Desert 448 -7.83 26.78 0.87

Island 313 5.35 18.34 0.82

Continent 3293 -0.7 29.16 0.89

Polar 3128 -1.0 27.6 0.93

Model B Parameterized FluxesFu-Liou RT Model Fluxes

2. CRS vs Model B Surface Flux Validation

Results for Terra FM1 are similar
* Bias, RMSE units:  W m-2



Polar Clear-Sky Surface LW↓ Fluxes

Systematic underestimation of clear-sky LW↓@ (left) Dome C & (right) WAIS Divide, Antarctica
Surface-based thermal inversion not well resolved in GEOS 5.4.1

Starting to develop inversion correction following Gupta et al. 2010

CRS

SSF Ed4A

Systematic negative 
clear-sky LW↓ bias
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2. CRS vs Model B Surface Flux Validation



CRS vs SYN1deg
Surface (↓) Flux Validation

3. CRS vs SYN1deg Surface Flux Validation
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• SYN1deg provides gridded hourly 
surface fluxes also calculated using  
the Fu-Liou RT model

• We also compared CRS to SYN1deg

• SYN1deg fluxes compared to 1-hr average
of the obs. centered on the half hour

• Both products are reasonably 
consistent & show similar statistics

• CRS has a smaller SW↓ bias & std. 
dev. (σ) everywhere but Antarctica

• Footprints more representative of surface 
observations than 1o grid cells

• CRS cloud optical depths are 
unrealistically high over permanent snow 
and ice surfaces

• CRS and SYN1deg also show similar 
results in the LW↓
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4. CRS / FLASHFlux Machine Learning

Can We Use CRS & Machine Learning
to Improve FLASHFlux SSF Surface Fluxes?

Problem:

• FLASHFlux (P. Stackhouse’s talk next) provides near real-time estimates of Earth’s surface radiation 
budget components for agricultural, renewable energy, and other applications

• Currently, footprint-level surface fluxes are estimated using decades-old parameterizations (Model B) 
that, as we just showed, are generally inferior to CRS fluxes from the Fu-Liou radiative transfer model.

• However, running the Fu-Liou code at the CERES instrument footprint level is computationally expensive 
(~ 2.3M computations, ~12-16+ hours/day) and increases the difficulty of meeting latency requirements
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4. CRS / FLASHFlux Machine Learning

Can We Use CRS & Machine Learning
to Improve FLASHFlux SSF Surface Fluxes?

Approach / Solution: 

• Train supervised machine learning algorithms on CRS data, tune hyperparameters, & evaluate model 
performance to “learn” functional mappings that can accurately & rapidly predict CRS surface fluxes –
no need to run the Fu-Liou RT code!

• Linear, Decision Tree, Random Forest, & XGBoost Regressors

Spring 2021 CERES / Libera Science Team Meeting
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4. CRS / FLASHFlux Machine Learning

Supervised ML Algorithms:
Linear

Decision Tree
Random Forest

XGBoost

Precipitable Water Vapor (PWV)Cloud Optical Depth (COD)

Surface Altitude (ALT)

LW↓ = fi (X)

Eff. Emission Temperature (T) Cloud Fraction (CF)

Lower Tropospheric Stability (LTS)

X = 
T, CF, COD, CT, PWV, LTS, ALT

Surface Longwave Flux (LW↓)

Eff. Cloud Temperature (CT)

• Standardize X prior to training
• Train on day & night footprints
• Assess performance & tune 

hyperparameters using different 
evaluation metrics: 

• 80/20 Train-Test Split

• K-Fold Cross Validation

• Randomized Search CV 
(in progress)

• Provides functional mappings 
between meteorological parameters

that are physically relevant and readily 
available in the FLASHFlux data 

processing stream & the CRS flux



4. CRS / FLASHFlux Machine Learning

Supervised ML Algorithms:
Linear

Decision Tree
Random Forest

XGBoost

TOA Insolation (INS)

Surface Altitude (ALT)

Cloud Fraction (CF) Cloud Optical Depth (COD)

Precipitable Water Vapor (PWV)

Solar Zenith Angle (SZA)

X = 
INS, SZA, CF, COD, AOD, PWV, ALT

Aerosol Optical Depth (AOD)

SW↓ = gi (X)

Surface Shortwave Flux (SW↓)

• Provides functional mappings 
between meteorological parameters

that are physically relevant and readily 
available in the FLASHFlux data 

processing stream & the CRS flux

• Standardize X prior to training
• Train on daytime footprints
• Assess performance & tune 

hyperparameters using different 
evaluation metrics: 

• 80/20 Train-Test Split

• K-Fold Cross Validation

• Randomized Search CV 
(in progress)



LW↓



SW↓



4. CRS / FLASHFlux Machine Learning

FF v4A – CRS
ΔLW↓

FF v4A – CRS
ΔSW↓

RF – CRS
ΔSW↓

RF – CRS
ΔLW↓

Random Forest (RF) surface flux predictions much closer to CRS than FLASHFlux Model B
(top) FLASHFlux SSF v4A – CRS (bottom) RF – CRS flux difference (Δ) [ W m-2 ] 
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• CRS computes instantaneous footprint-level irradiances using the NASA Langley Fu-Liou RT code
• Here we summarized our progress resurrecting & validating CRS since we first reintroduced it 6 months ago

• Comparisons to CERES global TOA measurements show reasonable & stable performance
• Global mean all-sky LW↑ within 1% of CERES, SW↑ within 3 - 4% of CERES throughout 2019

• CRS surface fluxes are superior to SOFA Model B parameterized fluxes (SSF Ed4A, FF SSF v4A)
• Based on 2019 validation by surface site type using measurements from the CAVE database 
• SW↓ – RMS reduction of 34 - 39% (50 - 60 W m-2), higher correlation, lower bias for most site types
• LW↓ – RMS reduction of 17% (~ 4.7 W m-2), marginally increased correlation, lowest overall bias 
• Corrections needed for excessive Antarctic cloud optical depth & unresolved temperature inversions

• Machine learning with CRS offers a viable solution to improve FLASHFlux SSF surface fluxes
• We have developed, trained, & evaluated Linear, Decision Tree, Random Forest, & XGBoost regressors
• Random Forest & XGBoost successfully reproduce CRS fluxes w/ model RMS values less than the validation RMS

Δ between CRS & Model B; individual footprint errors are typically << Δ(FF – CRS)
• Next Steps: continue tuning models (RF & XGBoost) & devise scalable training methodology

deploy models in production & use as the operational source of FLASHFlux SSF surface fluxes

• We plan to release CRS publicly with CERES Edition 5 data products 
• Thank You!

Summary & Future Work

Spring 2021 CERES / Libera Science Team Meeting
ryan.c.scott@nasa.gov



Extra Slides

Spring 2021 CERES / Libera Science Team Meeting
ryan.c.scott@nasa.gov



4. CRS / FLASHFlux Machine Learning

Surface LW↓ Model Performance
Predicted - Actual Flux  [ W m-2 ]

XGBOOST

DECISION
TREE

LINEAR

RANDOM 
FOREST

XGBOOST
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4. CRS / FLASHFlux Machine Learning

Surface SW↓ Model Performance
Predicted - Actual Flux  [ W m-2 ]

DECISION
TREE

XGBOOSTRANDOM 
FOREST

LINEAR
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ARM West Antarctic Radiation Experiment (AWARE)
WAIS Divide, Antarctica
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